Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome

نویسندگان

  • Mehmet Ali Öztürk
  • Georgi V. Pachov
  • Rebecca C. Wade
  • Vlad Cojocaru
چکیده

Linker histones are essential for DNA compaction in chromatin. They bind to nucleosomes in a 1:1 ratio forming chromatosomes. Alternative configurations have been proposed in which the globular domain of the linker histone H5 (gH5) is positioned either on- or off-dyad between the nucleosomal and linker DNAs. However, the dynamic pathways of chromatosome assembly remain elusive. Here, we studied the conformational plasticity of gH5 in unbound and off-dyad nucleosome-bound forms with classical and accelerated molecular dynamics simulations. We find that the unbound gH5 converts between open and closed conformations, preferring the closed form. However, the open gH5 contributes to a more rigid chromatosome and restricts the motion of the nearby linker DNA through hydrophobic interactions with thymidines. Moreover, the closed gH5 opens and reorients in accelerated simulations of the chromatosome. Brownian dynamics simulations of chromatosome assembly, accounting for a range of amplitudes of nucleosome opening and different nucleosome DNA sequences, support the existence of both on- and off-dyad binding modes of gH5 and reveal alternative, sequence and conformation-dependent chromatosome configurations. Taken together, these findings suggest that the conformational dynamics of linker histones and nucleosomes facilitate alternative chromatosome configurations through an interplay between induced fit and conformational selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic condensation of linker histone C-terminal domain regulates chromatin structure

The basic and intrinsically disordered C-terminal domain (CTD) of the linker histone (LH) is essential for chromatin compaction. However, its conformation upon nucleosome binding and its impact on chromatin organization remain unknown. Our mesoscale chromatin model with a flexible LH CTD captures a dynamic, salt-dependent condensation mechanism driven by charge neutralization between the LH and...

متن کامل

Prediction of Nucleosome Positioning Based on Transcription Factor Binding Sites

BACKGROUND The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the fa...

متن کامل

Regulation of chromatin folding by conformational variations of nucleosome linker DNA

Linker DNA conformational variability has been proposed to direct nucleosome array folding into more or less compact chromatin fibers but direct experimental evidence for such models are lacking. Here, we tested this hypothesis by designing nucleosome arrays with A-tracts at specific locations in the nucleosome linkers to induce inward (AT-IN) and outward (AT-OUT) bending of the linker DNA. Usi...

متن کامل

Nucleosome assembly protein-1 is a linker histone chaperone in Xenopus eggs.

In eukaryotic cells, genomic DNA is primarily packaged into nucleosomes through sequential ordered binding of the core and linker histone proteins. The acidic proteins termed histone chaperones are known to bind to core histones to neutralize their positive charges, thereby facilitating their proper deposition onto DNA to assemble the core of nucleosomes. For linker histones, however, little ha...

متن کامل

Nucleosome conformational flexibility and implications for chromatin dynamics.

The active role of chromatin in the regulation of gene activity seems to imply a conformational flexibility of the basic chromatin structural unit, the nucleosome. This review is devoted to our recent results pertaining to this subject, using an original approach based on the topology of single particles reconstituted on DNA minicircles, combined with their theoretical simulation. Three types o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016